
- , F -

-ILL COpy

NASA Contractor Report 182086

ICASE INTERIM REPORT 12

LANZ: SOFTWARE SOLVING THE LARGE SPARSE
SYMMETRIC GENERALIZED EIGENPROBLEM

Mark T. Jones
Merrell L. Patrick

NASA Contract No. NAS1-18605 D TIC
August 1990 5 LCT

OTO 1990

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

DISTRIBUTION STATEMENT A-7

Approved for public release;
Distribution Unlimited

RAM go1 03 028
National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665-5225

. .eE1Y



ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.
The series will complement the more familiar blue ICASE reports that have been
distributed for many years. The blue reports are intended as preprints of
research that has been submitted for publication in either refereed journals or
conference proceedings. In general, the green Interim Report will not be submit-
ted for publication, at least not in its printed form. It will be used for research
that has reached a certain level of maturity but needs additional refinement, for
technical reviews or position statements, for bibliographies, and for computer
software. The Interim Reports will receive the same distribution as the ICASE
Reports. They will be available upon request in the future, and they may be
referenced in other publications.

1C ' or

m Robert G. Voigt
"t 0 Director

t' : riibut-ion/ _____

Pv:~l~tbility Codes

-- Avaii and/or

15 st Spocial



LANZ: Software for Solving the Large Sparse
Symmetric Generalized Eigenproblem'

Mark T. Jones

Argonne National Laboratory

Argonne, IL 60439-4844

and

Merrell L. Patrick

Duke University
Durham, NC 27706

ABSTRACT

A package, LANZ, for solving the large symmetric generalized eigenproblem is described.
The package has been tested on four different architectures: Convex 200, CRAY Y-MP,

Sun-3, and Sun-4. The package uses a version of Lanczos' method and is based on recent
research into solving the generalized eigenproblem. /

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 and the Air Force Office of Scientific Research under AFOSR grant No. 88-0117
while the authors were in residence at the Institute for Computer Applications in Science and Engineer-

ing (ICASE), NASA Langley Research Center, Hampton, VA 23665. Additional support was provided by
NASA grant No. NAG-1-466. Computer time on a CRAY Y-MP was provided by the North Carolina
Supercomputing Center.

III



1 Purpose

LANZ solves the symmetric generalized eigenproblem,

Kx = AMx, (1)

where K is symmetric positivc dennite and M is positive semi-definite. It

is also rapablc of solving
Kx = -AMx, (2)

where M can be indefinite. It can find either 1) all the eigenpairs in a user-
specified range, or 2) the p eigenpairs closest to some user-specified value,
O'.

2 Method

LANZ is an implementation of the algorithm described in [5]. The heart of
LANZ is an implementation of the Lanczos algorithm used with a spectral
transformation similar to that described in [7]. LANZ uses an improved ver-

sion of the selective orthogonalization algorithm proposed in [8] to maintain
semi-orthogonality among the Lanczos vectors.' In addition, LANZ uses a

dynamic shifting algorithm to accelerate convergence to desired eigenpairs

in a slightly different fashion than in [2].
To utilize the spectral transformation, LANZ requires the solution of

linear systems of the form (K - aM)x=b, where the matrix (K - oM)
can be indefinite. 2 When LANZ can determine that (K - aM) is positive

definite, an algorithm designed for banded positive definite linear systems
on supercomputers is used. If LANZ determines that the matrix may be

indefinite, then an algorithm for solving banded indefinite linear systems
on supercomputers is used [6][4]. It is assumed that the sparse matrices
have been reordered to have a small bandwidth via an available reordering

algorithm. Alternatively, the linear system solution algorithms included
with LANZ can be replaced with ones of the user's choice, a relatively simple

task that is described in documentation accompanying the code. 3

'The improved version of the selective orthogonalization algorithm is described in [3].
'When solving Equation 2, the system to be solved is (K + aM)z = y.
3The authors expect to add a sparse factorization and solution algorithm for indefinite

linear systems to LANZ in the near future.



3 Description of the Package

LANZ has been coded in FORTRAN with some well-documented machine-
dependent routines for memory allocation and timing written in C. LANZ
has been tested .-- £-',,r different computers: the CRAY Y-MP running
UNICOS, the Convex 220 running coiivF.x UNIX, the Sun-3, and the Sun-
4 running SunOs UNIX. LANZ was originally designed to rin on computers
that have vector instructions such as the CRAY Y-MP and, as such, is
optimized for vector machines. In the CRAY Y-MP and Convex 200 versions
of LANZ, integers are 8 bytes long; in the Sun-3 and Sun-4 versions, integers
are 4 bytes long. Reals are 8 bytes long in all versions of the code.

3.1 Installation

Because the code must include different compiler directives for the CRAY
Y-MP and Convex 220, as well as other different features for the different
machines, a software development utility, called MAX, is used and included
with the package [1]. The installation process is completely automated by
the use of makefiles and scripts and is described in documentation accom-
panying the source code.

4 Usage

To use the LANZ package, the user can either 1) link to the compiled library,
lanz.a, and directly call the LANZ subroutine as described in the following
section, or 2) run the driver provided with the program and read in matrices
from files. 4 Because the driver program is fairly long and is described in
documentation accompanying the source code, it is not included in this
paper.

4.1 Call to LANZ

CALL LANZ(ipar,rpar,theta,bj,y,relate,K,Krp,Kcp,M,Mrp,Mcp,guess)
The parameters ipar, rpar, K, Krp, Kcp, M, Mrp, and Mcp must be Jet

by the user on input. The parameters theta, bj, y, relate, and gues:, are
optionally set by the user on input. Upon return, the parameters ipar, rpar,
theta, bj, y, relate, and guess contain information generated by LANZ.

'The use of the driver program is described in documentation accomp nying the code.

2



4.2 Description of Parameters

ipar in/out ipar is an intege: array of dimension 19 used to set many of
the options for LANZ. Upon return, it contains information
about the execution of LANZ.

ipar(1) in The order of the ratries, K and M.

ipar(2) in The maximum number of eigenpairs that can be stored. This
is limited by the size of y, relate, theta, and bj. This parame-
ter should be set to more than the number of eigenvalues one
is seeking (or expects to find).

ipar(3) in The number of eigenvalues being sought. This value is ig-
nored if ipar(12) is 1.

ipar(4) in/out On input this is the maximum number of Lanczos steps that
LANZ can take. On output it is set to the number of steps
LANZ took. This value only determines the amount of time
one is willing to wait for an answer; a suggested default is
three times the number of desired eigenpairs.

ipar(5) out 0 if LANZ was successful, a negative value otherwise.

ipar(6) in/out On input it is set to the number of eigenpairs already found
(and stored in theta, bj, y, and relate). On output it contains
the total number of eigenpairs found (including those already
present prior to execution of LANZ).

ipar(7) in Sets the level of debugging output desired. This should nor-
mally be set to 0 (positive values result in more debugging
output, none of which is of interest to the user).

ipar(8) in The type of problem being solved: 0) K is positive definite
and M is positive semi-definite (Kx = AM:), 1) K is positive
definite, M is indefinite, and the shift a is non-zero (Kx =

-AMx), or 2) same as 1) except that a is zero.

3



ipar(9) in A parameter that instructs LANZ to use inertia calculations

to ensure that the eigenvalues that were found were actu-

ally those closest to the desired a. A 0 indicates no inertia

checking, and a 1 indicates that inertia checking is desired. If
LA NZ determines that some eigenvalues are missing, it will
automatically atteinpt to find them. A word of caution: nor-
mally this option requires an extra factorization of (K-aoM),
an expensive calculation. Also, this option is redundant if
ipar(12) is set to 1.

ipar(10) in Indicates the type of printed report that LANZ should pro-
duce. For no output, it should be set to 0. Otherwise, the
type of report produced is determined by summing the num-
bers of the following options: 2) print the orthogonality ma-
trix of the computed eigenvectors (yTy), 4) print the number
of negative eigenvalues to the left of each shift point used,
16) print the eigenvalues, the estimated and calculated er-
ror bounds on each eigenpaira, 32) print the eigenvalues and
their estimated error bounds, 64) print only the eigenvalues.
For example, if the report is to contain the number of neg-
ative eigenvalues to the left of each shift (option 4) and the
eigenvalues (option 64), then this parameter would be set to
68.

aThe calculated error bound on an eigenpair is found by 11 Ky-AMy II

ipar(ll) in The maximum number of steps to take on one shift. This
value is important only in that it is used by LANZ to de-
termine how much memory it needs to allocate. A suggested
default is 50. This value can be increased if LANZ suggests it,
or decreased if LANZ indicates that it has run out of memory.

ipar(12) in This parameter indicates whether all the eigenvalues in a
range are sought (set to 1), or if a fixed number of eigen-
values nearest to a given shift are sought (set to 0).

ipar(13) in Storage format for K. Should always be set to 0 in this version
of LANZ.

4



ipar(14) in Storage format for M. Should always be set to 0 in this version
of LANZ.

ipar(15) in The level of loop unrolling to be used in the factorization and
triangular matrix solution steps for positive definite matrices.
Legal values are 1, 4, and 6. The suggested value is 6.

ipar(16) in The type of factorization used. A 0 indicates that LANZ
should decide between a LDLT decomposition and a Bunch-
Kaufman type algorithm for indefinite matrices. A 1 indi-
cates that in the interests of speed that a LDLT decomposi-
tion is to always be used. It is suggested that this value be
left at 0.

ipar(17) in A value of 0 leaves dynamic shifting on, a value of 1 turns it
off. It is suggested that this value be left at 0 unless the user
understands what the dynamic shifting algorithm does and
decides that it is undesirable for his/her purpose.

ipar(18) in A value of 0 indicates that no initial guess for an eigenvector
exists. A value of i indicates that an initial guess for an
eigenvector is stored in the parameter, guess.

ipar(19) in This value should be set to the leading index of the y array.

rpar input rpar is an real array of dimension 5 that is used to set some
of the options for LANZ.

rpar(1) in The o, or shift to be searched around, ignored if ipar(12) is 1.

rpar(2) in The desired relative accuracy of the eigenpairs, the formula
for relative accuracy is given as a footnote to ipar(10). A
suggested default is 1.

rpar(3) in If ipar(12) is set to 1, this value is the left end of the range
in which to search.

rpar(4) in If ipar(12) is set to 1, this value is the right end of the range
in which to search.

5



rpar(5) in The value is the storage factor to be used when allocating
space for the factored matrix when performing a Bunch-

Kaufman factorization. This value is multiplied by the

amount of space required for a positive definite factorization
of (K - aM) to get ttie amount of space to be allocated for
a Bunch-Kaufman type factorization. A suggested default is

1.1 and should be changed only if LANZ suggests it.

theta in/out Theta is an array of real values of at least length ipar(2). On

input, it is used to store any eigenvalues found prior to calling

LANZ. On output it is used to store any eigenvalues found

by LANZ. The eigenvalues stored prior to a call to LANZ will

not be written over (this also pertains to bj, y, and relate).

bj in/out bj is an array of real values of at least length ipar(2). On

input, it is used to store the error bounds on any eigenvalues

found prior to calling LANZ. On output it is used to store

the error bounds on any eigenvalues found by LANZ. Entry i

in bj is the error bound for the eigenvalue in entry i in theta.

y in/out y is a two-dimensional array of real values with ipar(19) rows

and at least ipar(2) colamns. On input, the columns of y are

used to store any eigenvectors found prior to calling LANZ.

On output the columns of y are used to store any eigenvectors

found by LANZ. Eigenvectors are related to the correspond-
ing eigenvalues by the relate parameter.

relate in/out Relate is an integer array of length at least ipar(2) that de-

scribes the relationship of eigenvector to its corresponding

eigenvalue. Eigenvalue i corresponds to eigenvector relate(i).
On input relate stores the relationships of eigenpairs found

prior to the call to LANZ, and on output it stores the rela-

tionships of pairs found by LANZ.

6



K in K stores the nonzero entries in the K matrix. The first
ipar(1) values should be the diagonal entries of K (including
zeros). The next number of non-zero entries entries should be
the off-diagonal non-zeroes in the upper triangle of K stored
by row. The amount of memory allocated for K should be
2*(ipar(1)+the number of non-zero off-diagonals in the upper
triangle of K). This extra memory is used as working space
and is a tradeoff to increase execution speed on vector com-
puters. K and all the information associated with it (as well
as M) are left intact on output.

Krp in Krp is an integer array that indicates where each row of non-
zeroes begins in K (with an assumed offset of ipar(1)). For ex-
ample, if entry i in Krp is set to 10, it indicates that the non-
zeroes for row i start at position ipar(1)+10 in K. The amount
of memory allocated for Krp should be 2*(ipar(1)+1).

Kcp in Kcp is an integer array that indicates the column number
of each non-zero off-diagonal in K. For example, a value
of 10 in Kcp(30) indicates that the non-zero in position
K(ipar(1)+30) is in column number 10. The amount of mem-
ory allocated for Kcp should be ipar(1)+2*(number of off
diagonal non-zeroes in the upper triangle of K).

M in M stores the nonzero entries in the M matrix. The first
ipar(1) values should be the diagonal entries of M (including
zeros). The next number-of-non-zero-entries entries should
be the off-diagonal non-zeroes in the upper triangle of M
stored by row. The amount of memory allocated for M should
be 2*(ipar(1)+the number of non zero off diagonals in the
upper triangle of M). This extra memory is used as working
space and is a tradeoff to increase execution speed on vector
computers. M and all the information associated with it (as
well as M) are left intact on output.

'1



MIrp in Mrp is an integer array that indicates where each row of
non-zeroes begins in M (with an assumed offset of iar(1)).
For example, if entry i in Mrp is set to 10, it indicates
that the non-zeroes for row i start at position ipar(1)+10
in M. The amount of memory allocated for Mrp should be

2*(ipar(1)+ 1).

Mcp in Mcp is an integer array that indicates the column number
of each non-zero off-diagonal in M. For example, a value
of 10 in Mcp(30) indicates that the non-zero in position

M(ipar(1)+30) is in column number 10. The amount of mem-

ory allocated for Mcp should be ipar(1)+2*(number of off
diagonal non-zeroes in the upper triangle of M).

guess in/out Guess is a real array of at least length ipar(1) that is used

to store an initial guess for an eigenvector, if any. It will be
destroyed on output.

Acknowledgment

The authors thank Eugene Poole for the use of his fast factorization/solution
subroutines for banded linear systems.

References

[1] C. A. FELIPPA, Utilities for Master Source Code Distribution: MAX
and Friends, Contractor Report 178383, CSM Branch, NASA Langley

Research Center, Hampton, VA, 1988.

[2] R. G. GRIMES, J. G. LEWIS, AND H. D. SIMON, The Implementation
of a Block Lanczos Algorithm with Reorthogonalization Methods, ETA-
TR-91, Boeing Computer Servies, Seattle, WA, May, 1988.

[3] M. T. JONES, The Use of Lanczos' Method to Sc'vc the Generalized
Eigenproblem, PhD thesis, Department of Computer Science, Duke Uni-
versity, 1990.

8



[4] N1. T. JONES AND -A. L. PATRICK, Bunch-Kaufman Factorization for
Real Symmetric Indefinite Banded Matrices, Technical .T.eport 89-37, In-
stitute for Computer Applications in Science and Engineering (ICASE),
NASA Langley Research Center, Hampton, VA, 1989.

[5] - , The Use of Lanczos's Method to %lve the Large Generalized Sym-

metric Definite Eigenvalue Problem, Technical Report 89-67, Institute

for Computer Applications in Science and Engineering (ICASE), NAS A
Langley Research Center, Hampton, VA, 1989.

[6] -, Factoring Symmet-ic Indefinite Matrices on High-Performance

Architectures, Technical Report 90-8, Institute for Computer Applica-

tions in Science and Engineering (ICASE), NASA Langley Research

Center, Hampton, VA, 1990.

[7] B. NOUR-OMiD, B. N. PARLETT, T. ERICSSON, AND P. S. JENSEN,

How to Implement the Spectral Transformation, Mathematics of Com-

putation, 48 (1987), pp. 663-673.

[8] B. N. PA-,LETT AND D. S. SCOTT, Lanczos Algorithm with Selectiue

Orthogonalization, Mathematics of Computation, 33 (1979), pp. 217-

238.



NA/SA Report Documentation Page
I Report No 2 Government Accession No. 3. Recipient's Catalog No

NASA CR- 1 82080
I k ASE n1 1te r i 11. Re )r t

4 Title and Sutitle 5 Report Date

LAN/. SO)V1R'ARE FOR SOLVING fill- LARGCE SPARSE SYM1METRiC August 1990

6 Performing Organization Code

7Autnois 8. Performing Organization Report No.

,ark I. .1 eiInterim No. 12

10 Work Unit No.

9 Peformng Adres __ . -- 50 3-90-21-01 -
9 PeforingOrganization Namne an, drs

in,- L it tI Le for Comiputer Applica tions in Scitence 11. Contract or Grant N,.
and Eli., ,ineering

MaIi iL S top 1 32C, NASA Langley Resrarcx Center NS-80
liv tpon, VA 23065-5225 13. Type of Report and Period Covered

12 Sponsoring Agency Name and AddressCotaorRpt
Natijonal Aeronaut IICS and Space AdministratiLonCotaorRor
LAH.J 1eV Research Center 14 Sponsoring Agency Code

imLitpon, VA 23605-5225

-5 Su pplementary Notes

Laing Iy TechnicalI Moni tor:
R icnard W. Barnwell

I nterilt Repor t

16 _A~bstract___

A package, LANZ, for solving the large symmetric generalized eigenproblem is
described. The package has been tested on four different architectures: Convex 200,
CRAY Y-MNP, Sun-3, and Sun-4. The package uses a version of Lanczos' method and is
based on recent research into solving the generalized elgenproblem.

17 Key Words (Suggested by Authorls)) 18. Distribution Statement

generalized Eigenvalue problem, 39 - Structural Mechanics

[anczos method 61 - Computer Programming and SoftwareN

___ __________________________Unclassified - Unlimited
19 Security Classif. (of this report) 20. Security Classif. (of this page) 21,-No, of pages 22. Price

Unclassified Unclassified 13 A03

NASA FORM 16n6 OCT 86 N5-age.I~


